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Note 

A Pseudo-Upstream Differencing Scheme for Advection 

INTRODUCTION 

The accurate and efficient representation of the advective process is often of major 
importance in the numerical modelling of fluid dynamical problems. For example, in 
numerical weather prediction it is of paramount interest to obtain an accurate 
estimate of the rate of propogation of major low-pressure systems and surface fronts. 
An appreciation of the behavior of the various approximation techniques that have 
been employed to model this process can be obtained from an analysis of their 
treatment of wave solutions of the prototype scalar advection equation: 

where c is a constant advection velocity. 
A comparison of the properties of several well-established finite-difference approx- 

imations of this equation formulated within an Eulerian framework was presented by 
Morton [8]. It was shown that in general the magnitude of the numerical damping 
and/or the false dispersion due to numerical phase errors is large for conventional 
low-order schemes (e.g., upstream differencing) and that it was thus desirable to have 
recourse to more complicated, but not necessarily higher-order, schemes. Examples of 
such schemes are those of Roberts and Weiss [ 111 and Fromm [4]. These 
conclusions have been reinforced in subsequent studies [5, 7, 121. 

A further repercussion of the desirability of adopting more complicated 
differencing schemes arises from the fact that these schemes also involve a 
considerable increase in computation. Thus other numerical approaches become 
viable alternatives, viz., spectral methods [7, lo], finite-element methods [3, 91, and 
other variants [ 1, 6, 131. These alternative techniques have been shown to possess 
comparatively small numerical phase speed and damping errors, and concomitantly 
may also satisfy, subject to time-truncation errors, some of the integral properties 
satisfied by the original differential equations. It is to be noted, however, that some of 
these methods are less attractive if the boundaries of the flow domain are open, i.e., 
advection can take place across the “purely geometric” boundaries. 

In this note we introduce a comparatively simple finite-difference scheme which is 
particularly suitable for use with open-boundary flow problems. The scheme is shown 
to possess phase and damping properties that are on a par with sophisticated 
difference schemes [4, 5, 111 and the alternative methods referred to earlier. 
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PSEUDO-UPSTREAM SCHEMES 

The schemes to be considered are a generalisation of the conventional upstream 
differencing scheme (i.e., forward in time, backward in space). First we note that the 
characteristics of Eq. (1) are given by the family of straight lines x - ct = const. 
Thus, if we consider the space-time mesh given by x =j(dx), t = n(A) with 
j = 1, 2 ,..., n = 1, 2 ,..., it follows that u;’ ’ = u:, where x, = j(dx) - c(dt) = dx( j - a), 
and u = c(dt/dx) is the Courant number. 

Finite-difference schemes can be constructed by employing spatial interpolation 
schemes to estimate U: (and hence u;” ) from the known grid point values of u at 
time level n. The conventional upstream scheme, 

u,i” + ’ = (1 - a) 24; + au;- 1) 

clearly corresponds to a linear interpolation for U: between the two neighboring 
points (j - 1, j). Similarly it can be shown that the Lax-Wendroff scheme is 
equivalent to a quadratic interpolation procedure using the grid points 
(j - 1, j, j + 1). This strategy invites extension to higher order. The formulas derived 
using cubic or quintic polynomial interpolation centered about the points (j - 1, j) 
may be termed “pseudo-upstream schemes” since they require an “upstream” strategy 
for their execution. In addition they also retain the original upstream scheme’s 
property of having zero phase errors for a = 0.5 and 1.0. 

The change effected by increasing the order of the polynomial interpolation is 
illustrated in Fig. 1 which shows the damping and relative phase change per time step 
for wave solutions of Eq. (l), for the various orders of interpolation, and with a = 0.2 
and 0.7. We note that the cubic scheme is superior to the “quartic” scheme, viz., the 
scheme based upon a fourth-order polynomial interpolation centered about (j), in 
terms of phase speed and is only marginally inferior in its amplitude response. 
Moreover, there is a suggestion that the solutions for the odd-order polynomial 
schemes are rapidly asymptoting toward the correct behavior. 

The difference formulation for the odd-order schemes, obtained using Lagrange’s 
interpolation formula, takes the forms 

(2) 

(3) 

The amplitude response and phase defects of these schemes representation of wave 
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FIG. 1. (a) Damping per time step and (b) relative phase change per time step plotted as a function 
of the wavelength (in grid lengths) for both a = 0.2 and a = 0.7. The numerals on the curves refer 
respectively to the order of the interpolation scheme (e.g., 5 denotes the quintic scheme). 

solutions of Eq. (1) are readily evaluated and the numerical values derived for the 
quintic are listed in Tables I and II. It is seen that, for the values displayed, the 
damping and relative phase speed change per time step is correct to within 5.3% at 
four grid lengths and correct to within 0.6% at six grid lengths and longer. The 
corresponding values for the cubic scheme are respectively 12% at four grid lengths 
and 2.7% for six grid lengths and longer wavelengths. 
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TABLE I 

Damping per Time Step as a Function of the Courant Number ((I) and the Wavelength in Grid Lengths 
(n) of the “Quintic” Pseudo-Upstream Scheme 

0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.8 0.9 1.0 

0.868 0.692 0.481 0.246 0.000 0.246 0.481 0.692 0.868 
0.950 0.894 0.843 0.806 0.793 0.806 0.843 0.894 0.950 
0.986 0.912 0.961 0.953 0.950 0.953 0.961 0.972 0.986 
0.996 0.991 0.988 0.986 0.985 0.986 0.988 0.991 0.996 
0.998 0.997 0.996 0.995 0.995 0.995 0.996 0.997 0.998 
I .ooo 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 
1.000 1.000 1 .ooo 1.000 1.000 1.000 1.000 1.000 1.000 

1.000 
1.000 
1 .ooo 
1.000 
1 .ooo 
1 .oOO 
1.000 

TABLE II 

Relative Phase Change per Time Step as a Function of the Courant Number (a) and the Wavelength in 
Grid Lengths (n) of the “Quintic” Pseudo-Upstream Scheme 

\n\a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

2 0.000 0.000 0.000 o.ooo 1.ooo 0.000 0.000 o.ooo o.ooo 1.000 
3 0.783 0.833 0.891 0.949 l.ooo 1.034 1.047 0.833 0.643 1 .ooo 
4 0.947 0.962 0.976 0.990 1 .oOO 1.007 1.010 1.010 1.006 1 .ooo 
5 0.984 0.989 0.993 0.997 1.ooo 1.002 1.003 I .003 1.002 1.000 
6 0.994 0.996 0.997 0.999 1.ooo 1.001 1.001 1.001 1.001 1.000 
8 0.999 0.999 1.ooo 1.000 1.ooo 1.000 1.000 1.000 1.000 1 .ooo 

10 1.000 1.000 1.000 1 .ooo 1 .OOo 1 .ooo 1 .ooo 1.000 1.000 1 .ooo 

FURTHER REMARKS 

In the previous section we merely analyzed and catalogued the phase speed and 
numerical damping properties of the pseudo-upstream schemes. However, the 
selection of a particular numerical scheme to study a specified flow problem will 
clearly depend upon the relative merits of that scheme for the problem under 
consideration. Thus, it is appropriate to provide a brief comparative assessment of the 
pseudo-upstream schemes. 

In Fig. 2 the damping and relative phase change per time step of the cubic and 
quintic schemes are compared with those of the schemes recently considered by Gadd 
[S] and Mahrer and Pielke [6] for the case of a = 0.2. A quantitative comparison for 
a range of a can be undertaken by reference to the tables in the original papers. 
Again a comparison of the phase change properties with that of the Fromm scheme 
(41 and the Roberts and Weiss scheme [ 111 is readily inferred from the work of 
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FIG. 2. (a) Damping per time step and (b) relative phase change per time step plotted as a function 
of the wavelength (in grid lengths) with a = 0.2, for the cubic and quintic pseudo-upstream schemes and 
for the schemes of Gadd (G), and Mahrer and Pielke (M + P). 

Morton [8]. In general, we conclude that the performance of both the cubic and 
quintic schemes is comparable with that of these other sophisticated difference 
schemes. It is also worth noting that the numerical damping of the upstream schemes 
is probably much less in many flow problems than that attributable to other physical 
diffusive mechanisms. 

For the case of the linear advection equation the response of a scheme to an 
arbitrary initial distribution of the advected variable can clearly be described, albeit 
perhaps cumbersomely, in terms of the phase and damping properties, e.g., the 
accuracy of the representation of the group velocity of a wave packet will be related 
intimately to the magnitude of the phase defect. However, other more physically 
orientated “local” criteria might also be of crucial interest and importance in 
particular problems. For example, many schemes exhibit an apparent predilection to 
develop spurious wave-like features or even negative values for a physically positive- 
definite flow variable when the advected variable has a sharp gradient on the scale of 
the grid length. To combat these errors special schemes have been developed to 
guarantee “monotonicity” [ 141 or with “positivity-preserving” features [ 2 ]. The 
pseudo-upstream method, unlike its progenitor-the upstream scheme, does not 
formally satisfy these latter criteria. Nevertheless, a measure of the pseudo-upstream 
scheme’s behavior in this context can be derived as follows: consider the response to 
the pathological instantaneos distribution of the advected variable given by an 
isolated spike with an amplitude E embedded in an otherwise uniform distribution of 
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unit amplitude. Then for 0 < CY < 1 no negative values of the advected variable will be 
generated at the subsequent time level by the cubic and quintic schemes respectively 
if the amplitude of the spike is such that E < 16 and E < 11. We note that for the 
Lax-Wendroff scheme and the second-order centered leapfrog scheme the 
corresponding amplitude bounds are respectively E < 3 and E < 2. 

Other criteria that influence the adoption of a scheme for a particular problem are 
the ease with which boundary conditions, including open-boundary effects, can be 
accommodated in the program and the computational efficiency of the scheme. The 
implementation of open-boundary conditions does not present as formidable a 
problem for the polynomial interpolation schemes compared with the nature of the 
problem for, say, the spectral technique or the spline scheme. In using the inter- 
polation schemes with open boundaries it would appear natural to reduce the order of 
interpolation in the vicinity of outflow boundaries. For example, with the quintic 
scheme we would need to reduce the order to a cubic for grid points adjacent to the 
boundary and then use the scheme based upon a linear interpolation procedure at the 
boundary itself. 

In terms of efficiency Eqs. (2) and (3) indicate that these schemes require less 
storage, and comparable (in the case of the cubic scheme) or considerably more (in 
the case of the quintic scheme) mathematical operations than, say, a difference 
scheme that is leapfrog in time and fourth order in space. The extension of the cubic 
scheme to two space dimensions would appear to be straightforward using the 
strategy of interpolation in two dimensions. However, for computational economy, it 
might be necessary to adopt the “splitting method” when extending the quintic 
scheme to two dimensions and acknowledge that this might entail an additional loss 
in accuracy. 

In summary the pseudo-upstream difference schemes outlined in this note are seen 
to possess several attractive properties. In particular they appear to be worthy 
contenders for adoption in modeling fluid-flow problems that involve open boundaries 
and require an accurate representation of the advective process. 
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